RLC circuit by function#

This example shows how to use the Function object to define an RLC circuit as an inlet boundary condition. The executable file for LS-DYNA is ls-dyna_smp_d_R13.1_138-g8429c8a10f_winx64_ifort190.exe.

'/server/output'

import os
import sys

from ansys.dyna.core.pre import examples, launch_dynapre
from ansys.dyna.core.pre.dynaem import (
    DynaEM,
    EMType,
    Function,
    Isopotential,
    Isopotential_ConnType,
    NodeSet,
    SolidFormulation,
    SolidPart,
)
from ansys.dyna.core.pre.dynamaterial import EMMATTYPE, MatRigid
from ansys.dyna.core.pre.misc import check_valid_ip


hostname = "localhost"
if len(sys.argv) > 1 and check_valid_ip(sys.argv[1]):
    hostname = sys.argv[1]

solution = launch_dynapre(ip=hostname)
fns = []
path = examples.em_rlc_define_func + os.sep
fns.append(path + "em_rlc_define_func.k")
solution.open_files(fns)
solution.set_termination(termination_time=0.01)
solution.create_database_binary(dt=1e-4)

emobj = DynaEM()
solution.add(emobj)

emobj.set_timestep(tssfac=1, timestep_size_for_mass_scaled=1e-4)

emobj.analysis.set_timestep(timestep=1e-4)
emobj.analysis.set_em_solver(type=EMType.RESISTIVE_HEATING)

matrigid = MatRigid(
    mass_density=7000,
    young_modulus=2e11,
    center_of_mass_constraint=1,
    translational_constraint=7,
    rotational_constraint=7,
)
matrigid.set_em_permeability_equal(material_type=EMMATTYPE.CONDUCTOR, initial_conductivity=1e4)

part1 = SolidPart(1)
part1.set_material(matrigid)
part1.set_element_formulation(SolidFormulation.CONSTANT_STRESS_SOLID_ELEMENT)
emobj.parts.add(part1)

nset1 = NodeSet(
    [
        429,
        433,
        437,
        441,
        445,
        449,
        453,
        457,
        461,
        465,
        469,
        473,
        477,
        481,
        485,
        489,
        493,
        497,
        501,
        505,
        509,
        513,
        517,
        521,
        525,
    ]
)
nset2 = NodeSet(
    [26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146]
)
isopos_conn1 = Isopotential(nset1)
isopos_conn2 = Isopotential(nset2)
fn = """float rlc(float time,float emdt,float curr,float curr1,
        float curr2,float pot1,float pot2, float rmesh)
        {
        float fac,R,C,Vc,L,xi ;
        R = 0.5e-3; L = 78.e-6;
        fac =1.e-6; C=363.e-4;
        float q= 181.5;
        if(time<emdt) return fac;
        q=q+emdt*curr;
        Vc=q/C;
        xi=(Vc*emdt-L*curr)/((R+rmesh)*emdt+L);
        return xi*rmesh;
        }"""
emobj.connect_isopotential(contype=Isopotential_ConnType.VOLTAGE_SOURCE, isopotential1=isopos_conn1, func=Function(fn))
emobj.connect_isopotential(contype=Isopotential_ConnType.VOLTAGE_SOURCE, isopotential1=isopos_conn2)

emobj.create_em_output(mats=2, matf=2, sols=2, solf=2)

solution.save_file()

Total running time of the script: (0 minutes 0.030 seconds)

Gallery generated by Sphinx-Gallery